翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

elliptic hypergeometric series : ウィキペディア英語版
elliptic hypergeometric series
In mathematics, an elliptic hypergeometric series is a series Σ''c''''n'' such that the ratio
''c''''n''/''c''''n''−1 is an elliptic function of ''n'', analogous to generalized hypergeometric series where the ratio is a rational function of ''n'', and basic hypergeometric series where the ratio is a periodic function of the complex number ''n''. They were introduced by in their study of elliptic 6-j symbols.
For surveys of elliptic hypergeometric series see or .
==Definitions==
The q-Pochhammer symbol is defined by
:\displaystyle(a;q)_n = \prod_^ (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^).
:\displaystyle(a_1,a_2,\ldots,a_m;q)_n = (a_1;q)_n (a_2;q)_n \ldots (a_m;q)_n.
The modified Jacobi theta function with argument ''x'' and nome ''p'' is defined by
:\displaystyle \theta(x;p)=(x,p/x;p)_\infty
:\displaystyle \theta(x_1,...,x_m;p)=\theta(x_1;p)...\theta(x_m;p)
The elliptic shifted factorial is defined by
:\displaystyle(a;q,p)_n = \theta(a;p)\theta(aq;p)...\theta(aq^;p)
:\displaystyle(a_1,...,a_m;q,p)_n=(a_1;q,p)_n\cdots(a_m;q,p)_n
The theta hypergeometric series ''r''+1''E''''r'' is defined by
:\displaystyle;b_1,...,b_r;q,p;z) = \sum_^\infty\fracz^n
The very well poised theta hypergeometric series ''r''+1''V''''r'' is defined by
:\displaystyle;q,p;z) = \sum_^\infty\frac\frac(qz)^n
The bilateral theta hypergeometric series ''r''''G''''r'' is defined by
:\displaystyle;b_1,...,b_r;q,p;z) = \sum_^\infty\fracz^n

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「elliptic hypergeometric series」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.